同角三角函数的基本关系,三角函数互化公式?
三角函数相互转换公式:sin(A+B)=sinAcosB+cosAsinBsin(A-B)。正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数有什么关系?
两个角的终边关于y=x对称,设两角为a,β则(a-kΠ-Π/4)=(kΠ+Π/4-β)则两个角之间的关系a+β=2kΠ+Π/2,k属于Z。
三角函数同终边角公式?
角的终边公式为
sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。本文将三角函数公式列举出来,方便大家查阅。
一两角和三角函数公式sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
二倍角三角函数公式
三三倍角三角函数公式
四半角三角函数公式
五和差化积三角函数公式
六积化和差三角函数公式
三角函数平方角公式?
三角平方公式是sin²α+cos²α,由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形。
三条弧线所围成的图形叫球面三角形,也叫三边形。由三条线段首尾顺次相连,得到的封闭几何图形叫做三角形,三角形是几何图案的基本图形。三角形是平面几何中最基本、最重要的图形之一,平面上不共线的三点及其每两点连结的线段所组成的封闭图形。
三角函数之间的对应关系公式?
函数关系
倒数关系:①tanαcotα=1;②sinαcscα=1;③cosαsecα=1
商数关系:①tanα=sinα/cosα;②cotα=cosα/sinα.
平方关系:①sin^2α+cos^2α=1②1+tan^2α=sec^2α;③1+cot^2α=csc^2α
诱导公式
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
公式二:为α任意角,π+α与的三角函数值之间的关系:
sin(2kπ+α)=sinα(k为整数)
cos(α+k*2π)=cosα(k为整数)
tan(α+k*2π)=tanα(k为整数)
cot(α+k*2π)=cotα(k为整数)
公式三:任意α角与-α的三角函数值之间的关系:
sin(2kπ-α)=-sinα
cos(2kπ-α)=cosα
tan(2kπ-α)=-tanα
cot(2kπ-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin[(2k+1)π-α]=sinα
cos[(2k+1)π-α]=-cosα
tan[(2k+1)π-α]=-tanα
cot[(2k+1)π-α]=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2kπ-α)=-sinα
cos(2kπ-α)=cosα
tan(2kπ-α)=-tanα
cot(2kπ-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:
记忆方法二:无论α是多大的角,都将α看成锐角.
以诱导公式二为例:
若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值。这样,就得到了诱导公式二
以诱导公式四为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值。这样,就得到了诱导公式四。
诱导公式的应用:
运用诱导公式转化三角函数的一般步骤:
特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。